In 1969, President Nixon created a commission to set the course for NASA’s Post-Apollo years. What they came up with was a bold, ambitious vision of the future. One with multiple space stations, moon bases, regular travel to and from space with airline-like frequency, and people on Mars in the 1980s.
TRANSCRIPT:
Imagine you’re Richard Nixon.
Before all the scandals, you’ve just come into office, it’s January 1969 and NASA has spent the last decade working toward the goal of landing on the moon.
It’s hugely popular and was spearheaded by your predecessor, who made it his mission to carry out the wishes of his predecessor, who became a beloved national hero after he was freaking assassinated.
A guy who, by the way, beat you in your first presidential run because it was the first time debates were televised and he was charming and looked good on camera, and you’re Richard Nixon.
But now you’re president and you get to just walk it across the finish line and take credit. Noice.
Problem is… There’s not really any plan for what to do next. In fact, all the Saturn V boosters that had been contracted had already been made by 1968.
So… what do we do now?
You have to find, somehow, a vision for the next step in American space flight that’s as inspiring and galvanizing as LANDING ON THE MOON. And you’ve gotta get this right or your legacy will be tainted, and the last thing you want, Mister Nixon, is for your legacy to be tainted.
This must have weighed heavily on the actual Richard Nixon because one of the very first things he did in office was to appoint a Space Task Group headed up by his VP Spiro Agnew.
This team of scientists, engineers, and bureaucrats got in a room and put together a bold, ambitious plan for the 70s and 80s that would shape the future of the space program. Almost none of it actually happened.
But what if it had? Today let’s take a look at this plan, what went wrong, and imagine the future that might have been.
When John F. Kennedy announced that the United States was going to the moon, it was pretty much a shock to everyone. I mean we had just launched the first person into space, now we’re going to land on the moon?
In fact, I think we have some footage of their reaction…
I mean… It never stops killing.
But for some people in the early space race, that goal was downright timid.
Werner Von Braun had his sights set on Mars going all the way back to his book Mars Project: A Technical Tale, where he outlined in detail what getting to Mars might look like, and this was back in 1948.
By the way, this book is available online, I’ll put a link down below… It is awesome.
His ideas were pretty out there but you can clearly see the way his vision for Mars influenced the space program AND science fiction.
I mean, look me in the eye and tell me the X-wing wasn’t based on this.
And, um, Starship much?
And in no way was 2001 inspired by this massive spinning space station design from 1956.
Yeah, he was designing a space station to house 55 people 5 years before we even put a human into space. And to this day we’ve never had that many people in space at the same time.
And actually, you know what, let’s just stop the video for a second. Can we just stop and get something out of the way real quick? So this whole video is about visions of space travel that never came true, and there’s two opposite ways of approaching it, one is to laugh at how overly optimistic and naive they were back then – and they were, and you can have a good laugh about it.
The other way to look at it is… Man, space travel has been a huge disappointment.
I mean, for a while there we seemed on track, we went from never putting a person into space to standing on the moon in 8 years. Of course people in 1969 thought some of these ideas were feasible. Oh, and to quote myself from a previous video – pissing contests work.
By contrast, it took 11 years after the Shuttle program ended to find another American ride to space.
It also kinda blows my mind that the entire Apollo program took place over only 6 years. I mean no wonder nobody was paying attention by the time Apollo 17 went up, they were going up all the time. They were like Starlink launches, you couldn’t keep up with them.
The point is, there are two different ways of looking at this. And there are parts of me that agree with both. Was it a failure of foresight on their part or a failure of execution on the people who followed? You can kinda keep that in your mind as we look into this.
But back to Werner von Braun, I bring up some of his early ideas just to point out that, just because we didn’t have a specific plan for what to do after Apollo didn’t mean that people hadn’t been making plans. In fact Nixon’s Space Task Group had a deep well of ideas to pull from.
So let’s look at this thing. So first they go on for __ pages kind-of setting up the parameters for the plan, kind-of creating a framework of purposes and objectives and a bunch of bureaucrat-speak, I’ll link to this down below if you want to read the whole thing, it’s not that long but the meat and potatoes is in Section III, Goals And Objectives.
The first thing they do, after again reiterating the importance of creating a vision for the future, is promote what they call a balanced approach.
So they right away stress the importance of both manned and unmanned space exploration, which is probably important since they’re mostly talking about following up Apollo, which was a manned program, they wanted to make sure that unmanned exploration wasn’t left on the side of the road.
So, I’m just gonna get this out of the way, it’s generally more accepted today to say “crewed” instead of “manned” for obvious reasons but since they used the word “manned” in 1969, that’s what they used in this report so instead of switching back and forth, I’m just going to use the language that they used.
And right now there are two type of people in the comments, the ones who are pissed at me for saying “manned” and the ones who are pissed at me for acknowledging that it’s an issue at all. Because internet.
All right now that they’ve established the need for balance, they talk about the need for an overriding ambitious objective, something as powerful as landing on the moon.
Yep. They wanted to go to Mars.
Actually, they wanted to set as a long-term goal manned planetary exploration, and Mars was the first step in that direction.
They went on to explain that they chose Mars because it is the most Earth-like, is in fairly close proximity to the Earth, and has the highest probability of supporting extraterrestrial life.
They felt that a mission to Mars would be a galvanizing force for the public to get behind, it’s simple and easy to understand and hey, landing on the moon worked, why wouldn’t landing on Mars?
But they also thought it would help as a way to focus the scientific development.
They also detailed some of the advancements that would need to be achieved in order to get there.
All of this is ambitious but the most ambitious thing about this plan was the timeline.
Like, how fast did they think they would be able to land on Mars? Well here’s a hint, Kim Carne’s song Bette Davis Eyes was #1 on the Billboard’s hot 100.
And for Gen Z… 1981, they wanted to go to Mars by 1981. And the hot 100…nevermind.
They wrote: NASA has outlined plans that would include a manned Mars mission in 1981 with the development decision on a Mars Excursion Module in FY 1974,
So they were expecting to have the Mars lander designed and ready for production in just 5 years.
And this was just supposed to be the beginning of our interplanetary travel. I mean if they were expecting to be landing on Mars by 1981, I can’t help but wonder what they would follow that with. Venus? Jupiter’s moons? Titan? I can only imagine what they thought we’d be doing by 2022.
Anyway, now that we have the overarching goal of the program, they outlined a handful of program objectives. I’ll just give a quick rundown here:
First is Application of space technology to the direct benefit of mankind Air and ocean traffic control, world-wide navigation systems, environmental monitoring and prediction (weather, pollution), earth resource survey communications
And they talk about how these capabilities would benefit people all over the world. And yeah… We have those things now. And I would argue the world is a much better place for it. So… that’s one prediction they got right.
Second is Operation of military space systems to enhance national defense
And they just talk under this one about how it’s incumbent on the US to dominate space in order to ensure peace throughout the world. Because obviously.
The third program objective is Exploration of the solar system and beyond.
This is dipping a wee bit into that “balanced” approach with manned and unmanned missions.
They divide this one into three main elements:
Planetary Exploration – Unmanned planetary exploration missions continuing throughout the decade, both for science returns and, in the case of Mars and Venus, as precursors to later manned missions.
See that’s interesting because it hints at a potential manned mission to Venus – probably using upper-atmosphere floating labs.
The program should include progressively more sophisticated missions to the near planets as well as multiple-planet flyby missions to the outer planets taking advantage of the favorable relative positions of the outer planets in the late 1970’s.
If that’s not ringing a bell, this is the Grand Tour of the Solar System they proposed when they saw a rare alignment of the planets; this became the Voyager missions.
Early missions to the asteroid belt and to the vicinity of a comet should be planned.
Again, things we’ve done.
The next element is Astronomy, Physics, the Earth and Life Sciences where they basically advocate for space telescopes, which we’ve done plenty of by now.
And the last element is Lunar Exploration. So no, they didn’t forget about the moon, all this we’re talking about is stuff outside of the obvious fact that we were going to continue going to the moon. Duh.
They proposed expanded mobility on the moon surface and establishment of lunar bases and a lunar space station. Which we’re starting to talk about again.
But it’s the 4th program objective where things start to get really saucy. This one reads Development of new capabilities for operating in space.
So right off the bat they address the biggest achilles heel with the Apollo Program:
Exploration and exploitation of space is costly with our current generation of expendable launch vehicles and spacecraft systems. This is particularly true for the manned flight program.
Yeah, turns out when only this part ever comes back to Earth, it’s not exactly efficient.
So with that in mind, they set three parameters for their plans: Commonality, Reusability, and Economy.
Commonality meaning using a few major systems for a wide variety of missions.
Reusability obviously means being able to use the same systems multiple times.
And economy not necessarily in terms of cost but in the terms of throw-away elements in the missions.
So, their plan to get us to Mars by 1981 while conforming to these principles looked like this.
The logic seems to be that if you are going to expand into the cosmos, you need to have sort-of an infrastructure in place.
And that infrastructure begins with waystations in orbit.
So they proposed the building of a multi-purpose space station module that can support 6-12 occupants and can be combined with other modules to form bigger space bases. Some of which are reaching Von Braun size.
But they didn’t have their eye on just one station, but a whole series of stations.
So in other words, multiple low-earth orbit stations but also a station further out in geosynchronous orbit and one around the moon.
I guess the idea being you can move people and cargo around between these various way points in space, and as the report suggests, out into the solar system.
Because obviously moving between the planets would take years of travel and you’d probably need something the size of a space station.
But yeah, in this vision there would be multiple space stations in LEO and GEO and at least one around the moon facilitating the movement of people and cargo on a regular basis from the ground on Earth to permanent bases on the moon.
But how do you transport this stuff between the stations? Well for that you’d need a kind of a… space transportation system.
For many of you the term Space Transportation System probably sounds familiar. And that’s because that was the official name of the Space Shuttle.
This is why Shuttle launches all had the prefix “STS” in it, that stood for Space Transportation System.
But in the Space Task Force plan, the Shuttle was just one part of a whole system of vehicles designed to “Carry passengers, supplies, rocket fuel, other spacecraft, equipment, or additional rocket stages to and from orbit on a routine aircraft-like basis.”
So when Elon Musk talks about how we need to make space flight as routine as air travel… Well he’s not the first person to say that.
The report described the Shuttle component as:
A reusable chemically fueled shuttle operating between the surface of the Earth and low-earth orbit in an airline-type mode. So this was the part of the system that got stuff off the ground and into orbit. Once in orbit, they proposed a different craft to move things around.
A chemically fueled reusable space tug or vehicle for moving men and equipment to different earth orbits. This same tug could also be used as a transfer vehicle between the lunar-orbit base and the lunar surface.
So this is kind-of like a shuttle that never has to launch off the ground or pass through any atmosphere so it was designed more like a giant can – you can see a similar idea in the Cygnus cargo spacecraft from Northrop Grumman.
There was a third component of this system though which kind-of sounds like a variation on the space tug idea, this one nuclear powered.
A reusable nuclear stage for transporting men, spacecraft and supplies between Earth orbit and lunar orbit and between low Earth orbit and geosynchronous orbit and for other deep space activities. So this was based on the NERVA engine, which is a really interesting topic that probably deserves its own video, but this was heavily in development at the time and to many was the future of space flight, especially deep space.
NERVA stands for Nuclear Engine for Rocket Vehicle Application, and it was what’s known as a thermal nuclear rocket, basically it used a nuclear reactor core to heat liquid hydrogen, causing it to expand, go flying out the flamey end and push the craft forward.
It had several advantages over chemical rockets, for one thing, hydrogen has a lower molecular mass than the oxygen and CO2 that comes out the butt of chemical rockets, which gives it more kinetic energy per unit of mass.
In other words it gets 3 to 4.5 times higher specific impulse than traditional chemical rockets.
You can think of them kind-of like ion engines, they’re not powerful enough to launch with but once in space, they can burn for way longer, giving more time to accelerate and eventually reach much higher speeds.
So nuclear rockets like the NERVA engine are especially good for long-distance and deep space travel. In theory.
I have to say in theory because it never flew. There were lots of tests done and it was determined to be ready to be put into a vehicle but it was cancelled in 1973. By Nixon.
But with the overriding goal of getting people to Mars, it makes sense that they would prioritize this because it could cut the length of the trip down to 3-4 months. But like I said, it deserves its own video because there were a lot of engineering challenges around it and ultimately it became a funding issue. To this day there haven’t been any nuclear thermal vehicles launched by anybody. Although there are some private companies working on it again.
The rest of the Task Force report focused on international cooperation and budget. And there was definitely a budget.
These were ambitious goals that would require ambitious spending. The task force wanted $6 billion, which was actually more than they were getting under Apollo.(Equals $46 billion today)
The 1969 budget for NASA was just over $4.25 billion, or 2.31% of GDP. But remember, all the vehicle construction was done by that point, it peaked in 1966 at $5.9 billion, or 4.41% of GDP.
So it wasn’t unheard of. When the US was pushing toward Kennedy’s big goal of landing on the moon, they gave NASA somewhat similar amounts of money. Now we had this bold plan for an entire space infrastructure, including moon bases and trips to Mars. Surely that was just as worthy of an investment.
Turns out… no.
Sure Nixon had inherited a space program at the very top of its game, but he also inherited the Vietnam War. And a financial downturn. And he was a fiscal conservative so, no, he was not about to give NASA more money than ever before.
Instead, NASA’s funding went down. By 1975, it was receiving less than 1% of the GDP. (.98%) In 2020 it was .48%.
So various parts of the plan got stripped away and the big bold vision got kinda lost to time.
But that doesn’t mean it’s a total bust. The Space Transportation System became the Space Shuttle, which; while it had its problems, is one of the most successful space vehicles of all time.
We didn’t get a whole bunch of space stations, but the space station idea stuck around and became Space Station Freedom in the 80s, eventually the ISS in the 90s.
They proposed landing on comets and we did that, they proposed sending probes to the asteroid belt, we did that (Dawn), they proposed the grand tour of the solar system. We did that. Twice.
They proposed Moon bases and landing people on Mars… We’re working on it.
What I find interesting about this whole period of the space program is how many things they kinda nailed. Sure their scope was wildly optimistic but the principles they espoused, the core tenants of reusability and whatnot, those are more relevant today than ever before. And we are kinda inching closer to their big vision. It’s frustratingly slow… But maybe we’re getting there.
But what if they had gotten their way? What if in some alternate utopian history we had spent the money on this instead of spending $10 billion a year on Vietnam? What would that look like? Where would we be today?
First of all, if any studio heads are watching, this would be an excellent premise for a movie or series, just saying.
If we landed on Mars in the early 80s and continued that same level of progress, we could have a small city there by now, at least a large base.
And we might have traveled beyond that in the solar system, maybe doing a crewed flyby of Venus, maybe asteroid mining would be more of a thing by now, starting to dip into The Expanse territory here…
We would definitely have a large presence on the moon, maybe a mature moon mining industry in place by now.
Or… it’s also possible that the entire thing backfires and winds up bankrupting the whole country. Although… maybe the opposite is true.
Some studies have estimated that for every $1 spent on the Apollo program $8 was made in terms of innovation, technology and job creation.
In fact, that’s the part of this question that’s really interesting, if we had continued funding the space program at Apollo levels up to today, what would technology look like? And how many new companies and jobs would have been created by that?
There’s also the question of how a program like that inspires people to go into science fields, apparently there was a massive spike in Ph.D’s after we landed on the moon. Who knows how that could have accelerated progress?
My writer Cooper took that $8 for every $1 spent metric and looked at what we would be spending if we had continued funding NASA at Apollo levels and estimated that it could have added more than $94 trillion to the economy.
That’s an interesting thought. Wildly speculative. But an interesting thought. The fact is, we don’t know what could have been. A lot of the advancements needed to make the Space Task Group plan happen couldn’t be solved by just throwing money at it.
There are a plethora of computer advances, materials advances and so on that need to happen before it can all come together in this way. Sometimes these things happen when they’re supposed to.
Maybe even with all the money in the world, we’d still be roughly where we are because this is the natural flow of progress. Many have argued that Apollo was kind-of a fluke and was way, WAY too early to actually be going to the moon.
Hell, I’ve made that argument. And I tend to agree with me.
But what do you think? Could they have pulled this off? Would it make the world a very different place? Talk about it down below.
Add comment